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at a set of related frequencies w-hose raL..

are specified in (2). Data of the sort desired
may already be available from some labora-

tory engaged in ionospheric soundings, If

not, itissuggested that simultaneous souud-

ingsat several frequencies be taken and the

results reported. If the experiments gave a

positive result, changes obviously would be
necessitated in some of our accepted views
as to the structure of the ionosphere.

IV. D. HE~SHBERGER
College of Engrg.
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Stability Criteria for Tunnel-

Diode Amplifiers*

.i tunnel-diode amplifier is stable when
the amplifier network is reduced to ml ar-

bitrary single loop and the equation given
by the sum of the impedances around this

loop equal to zero [zZ(P)=O where P=y

+jco ] has no solution in the right-half plane

{-r> O). This is equivalent to the require-
n)ent that the system determinant shall have

no zeros in the right-half plane. Several

authors have used this criterion.lz To de-
termine anal~-tically whether ZZ(p) hasauy

positit-e zeros is very laborious if at all
possible for many practical amplifier con-
figumtions.

A possible approach is to use a contour
theorem from the theory of complex func-

tions as formulated by Goldman.3 “If a
function Z(p) is analytic, except for possible

poles within a given contour taken in the

clockwise directim in the p-plane, then the
number of times that this contour into the

Z-plane encircles the origin in the Z-plane
in a clockwise direction is equal to the num-

ber of zeros minus the number of poles of
Z(p) inside thecontour inthe j-plane, each
pole and zero being counted in accordance
~rith its multiplicity.”

\Yhen applying this contour theorem to
zZ(@) for au arbitrary loop in the tunnel
diode cn-cuitry, we must ha~,e a complete

knowledge of the poles of ZZ(P ) in the right-
half plane and at infinity. Hughes” discusses

these difficulties and obtains a plot easy to

interpret by dividing the original function

Z()) with a new function Z,(P) with no

zeros in the right-half o-plane, the same
numberof poles as Z(p) in the right-half @-
plane and with the same limit at infinity as
Z(p) This method is applicable to tumlel-

diode amplifiers, but a complete knowledge

of the polesin the right-half p-plane is suffi-
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clent to interpret thecompleyp lot of zZ(pJ
along a chosen contour. Generally we can

say that the rloscr to the negative resistance

we choose the looprepresentiug the tunnel

diode and amplifier network, the fewer the

poles inthe right-half p-plane. It inconven-

ient to choose the representation given in

Fig. 1 for then the diode is separated from

the rest of the network.
Z’(p) includes thecartridgc capacitance,

bias circuit, matching network, load, etc.,
and is a passive impedance. The impedance
around this loop isgiveuby

*–KC

This function has one pole in the right-half

plane at@= YP=l/RCand apoleat,b= 1 CO.
IVith a contour in the ~-plane chosen as

the j-axis and a semicircle euclohing all
poles and zeros in the right-half plane, the
~Z-plot of a stable amplifier encircles the
origin once in a counterclockwise direction as
determined by the pole p = 1/RC. From

s~mnletry it is sufficient to plot ZZ(@) for
positive frequencies and only LIp to the

diode cutoff frequency osc as the circuit is
passive above co,. Davidsohn, Hwang and

Ober6 ha~,e considered stability criteria from

a similar point of view.
Summing up we have the following sta-

bility criterion: “A tunnel-diode atnplijier

m stable lf atld owl>, if the sww Of the diode

impedance and the cowzected network inz -
pedutwe plotted as a fuwctimz of f~eqaency
enci~cles the origin once in a counterclockwise

direction when the blot is closed with an a~bi-
t~ary line in the right-half Z-plane between

the pmltive and negative diode cutoff fre-

qaency. Tke diode cartridge capacitance is

consldewd to belong to the network c-onnectrd to

the diode. ” -
Fig. 2 shows the application of this cri-

terion. This circuit is one of the simplest

possible amplifier circuits and yet it is labor-
ious to in~-estigate the stability analytically.

The graphical display gives a good feel-
ing of how the amplifier stability is influ-

enced by change in diode parameters. This
is especially true when the amplifier circuit
is mm-e complex than givcu in the example
so that the minimum distance between the

origin and the plotted function occurs for

frequencies different from the amplifier

center frequency.
IYhen an amplifier configuration con-

nected to an ideal transmission line or a
load resistance R, is determined to be
stable, it is of interest to determ iuc which
mismatch is permissible at the input with-

out upsetting the stability. To do this we
reduce th~ amplifier network to the loop
nearest to the transmission line connection
(Fig. 3). Z~~P, includes the iumlel diode and
matching network ZI,A is the transnlission
line impedance with mismatches from circu-

lators, stabilizing networ~s, etc. A condition

for ~tability is that Z~”,pl(P) +zl..~(P) = o

5 U. S. Davidsohn, Y. C. Hwamz and G. B. Ober,
{<De~igning \vith tunnel dmdes, part 1,” Etec. De~if~~.

vol. 8, PP. 50–55; February, 3, 1960.
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Fig. 1– ?@uivzdent tunnel-diode amphfier representa-
tion showing loop chosen for stiabdity cnterla.
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- Example of d]ode and connected network
representatmg a stable amplifier.

‘ampclz’o
-LooP for determining permissible mmmatch.

has no solutioil. in the righ t-half plane. If

we define

G = (ideal voltage gain) = ~s~~—$
amp

~ = (nonideal load reflection coefficient)

then ZA~,, L+ZL,,.,1 = O can be rewritten a:;

G. P–l=O.
As G. p has no poles in the right-half

plane (G is stable and Z]~.,L is a passi~-e im-
pedance), a necessary and sufficient stabil-
ity criterion is that the complex plot of
G. p when CJgoes from — ~ to + m does not

encircle the point +1. (Compare with the
~TY~uist Criterion f “r feed hack-am plifiers. )

If the phase of the input reflection coef-

ficient is not known or not cent rolled, a suf -
ficient criterion for stability is

IGIIPI<L
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It is considered that a combined use of
the above described criteria gives a practical
means to investigate the stability of complex
tunnel-diode circuits and to determine the
limits of permissible mismatch and diode

characteristics variation.
The authors gratefully acknowledge the

supervision and helpful criticism of Dr. H.

Heffner.
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On “An Impedance Transformation

Method for Finding the Load

Impedance of a Two-Port

Network”*

The above articlel begins with ten ex-

tensive footnotes, but the authors omit the

one reference that discusses their problem:

Deschamps’ “Hyperbolic Protractor.”2 The

undersigned writers concede that the method
of Mittra and King is different, but it is more
complicated and less useful than that of
Deschamps.

Concerning footnote 15, one notes that
RIIR22 –Rlzj >0 is only a necessary but not
sufficient condition for a positive definite

quadratic form, and RII >0, or R,z> O is also
required for sufficiency.

The undersigned find it somewhat e.ur-

prising that many of the techniques found
in Deschamps’ pamphlet are not more

widely used, for they apply to the interest-
ing problems in measurements on linear

passive reciprocal two-ports.
D. J. R. STOCK

L. J. KAPLAN

Elec. Engrg. Dept.

New York University

lNew York, N. Y.

* Rcccived March 1, 1962.
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2 G. A. Deschamps, “A Hyperbolic Protractor for
Microwave Impedance Mea.s”rements and Other
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Authors’ Cornment8

Concerning our paper,l Messrs. Stock
and Kaplan have made the comment that
our method for calculating an unknown load
through a junction is complicated. To

illustrate their point, they cite two ex-

3 Received June 1, 1962,

amples ( 7 and 13) given in a booklet by
Deschamps.~ 4

We feel that Stock and Kaplan have
missed the most important points in our

paper. Section II of our paper is devoted to
the establishment of a linear relationship

between the input reflectance r,. and a

mgdified load reflectance rL’ by I’,. – i
= b( 1 –1’~’). The constants @and 6 may be

easily found but are not necessary for

calibration. This linear relationship is the
very heart of our paper, just as Deschamps’
invariance of “hyperbolic” distances and

“elliptic” angles is the basis of his booklet.
The examples chosen for comparison by

Stock and Kaplan involve the so-called
“three point method” which is subject to

experimental errors. In any case, it is in-
structi~-e to compare the two methods of sol-

ution of a typical example and let the reader

decide which is more complicated and which
is more accurate.

Example (Probletz 5—Lossless Case):

Iire have chosen problem 5 instead of 7

which is essentially the same but has addi-
tional property of more nearly showing the

inverse transformation from load to input

as well as the transformation from rln to
J7L’. The choice of the input reference is
arbitrary so let us rotate the data given by
Deschamps2 clockwise 71° on the Smith

chart so that when rL = + 1(ZL = m),
ri, = +1. The data would then read as fol-

lows :

1) Z,. =j90 when ZL = O,

2) Zim=~ when Z~=cu,

3) Z,, =81 +~90 when ZL=ZU=200 fl.

\Vhat is the input impedance for a termi-
nation of Z~ = 520 fl?

Take ZO1= 100 Q as the center of the in-

put reflectance chart. It should be pointed
out the original data given in the booklet
has some error in that the input impedance
corresponding to Z~ =0 should be~12 rather
than j10 in order for the other two measure-
ments to be consistent. This error may be

fairly difficult to detect with the hyperbolic

protractor because of the relatively large

hyperbolic distances (measured in db) in-

volved in this example.
Solution ( Mittra and A-i~zg): We have

chosen the input reference such that the ri.
plane coincides with the I?r,’ plane. Hence,
using the transformation z~’ = ?I,’ +jx~’

= rr,/rl+j(.x~+xl)/rl and data 3) above,

rl= 1/0.80= 1.233 and xI/rI =0.90 for ZL = 1,
which determines the calibration constants
?l and xl. To obtain z~’ =z~. for Z~ = 520 Q
we again apply the transformation relating
Z&’ tO CL. (?’L=2.6fl, XL~o. ) zl,’=~ill=$’L/r~

+jxl/rl =2.105 +jO.90 which completes the
discussion. It is obvious that the inverse
problem, Le., that of finding ZL when Z,,

is given is just reciprocal.

Solution (Hyperbolic Protj’actor Method):
Since many readers do not have access to the
booklet describing the use of the hyperbolic
protractor we reproduce the solution in
Fig. 1. Plot Q’, P’ and 0’ corresponding to

4 G. A. Deschamps, “A new chart for the solution
of transmission hne and polarization problem s,” IRE
TRANS. ON MICROWA\rE THEORY AND TECHNIQUES,
vol. MTT-l, pp. S–13; March, 1953. This paper de-
wmbes the theory discussed in Deschamps ‘rHyper.
bohc Protractor” and IS included in that booklet.
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data 1), 2) and 3) above. When the output
port is matched (200 Q), the corresponding
input reflectance point is O‘ which is called
the “iconocenter” by Deschamps. The trans-
formation may be made to the projective

chart by constructing ~ =(3(0’). Distances

on the reflectance (Smith) charts are de-
noted by [ ] and by ( ) on the projective

charts. Reflectance at the input port are

denoted by primes and points on the pro-
jective chart by bars. Thus (0~) = 2 [0~’ )

=17 db on Fig. 1. The points P’ and Q’ do
not change in this transformation P and
therefore the point U should fall on the——
straight line QP~the image of the diameter
QP. The point W which represents the in-

put reflectance for 520 Q at the output will——
be on QP at the hyperbolic distance <OW >

——

= [OVV] = 8 db or 16 db as measured on the
projective chart. This immediately gives a

means for constructing ~ which should be

between ~ and P’ since TJ’ itself lies between

O and P. Measuring (0~) with the pro-
tractor it is found to be 16 db, and W’ is ob-

tai~ed by taking the hyperbolic midpoint of

(O TV) or 8 db. The corresponding imped-

ance obtained from the reflectance chart is
then 2.06+j0.90.

Fig 1.

Exa wlple (P],oblem 13—Lossy Case): The
given data are:

1) Iconocenter = 8 db/ –90°,

2) r’,,, =9 db/28° when ZL =0.

\Vhat is the unknown load impedance
when rin= 10 db/—134°?

Solufion (Lfittra and A’ing): This exam-
ple shows how one deals with the image cir-

cle rather than the unit circle but follows the
same steps.

Expand the r,,-circle linearly and rotate
it to correspond to the r~ ‘-circle. Read the

transformed iconocenter from the r~’ plane

as ZLO’=(J.6zs —jO.65 =i’L/71+j(2L +XI)/YI.

The load corresponding to this point is

ZL= 1+.jo, so $’I= 1.60 and w = —1.04. Now
read the transformed point corresponding to
the unknown load impedance as SL’ = 0.375
—jO.043. Using the impedance transforma-
tion equation as before we find 2L = 0.60
+jO.991. Thus, the actual load reflectance
is rL = 11.1 db/80.5°. Incidentally, Des-

champs’ angle (CP”, CL”) =80.5°, not 71°,
in problem 13.


