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at a set of related frequencies whose rau.
are specified in (2). Data of the sort desired
may already be available from some labora-
tory engaged in ionospheric soundings. If
not, it is suggested that simultaneous sound-
ings at several frequencies be taken and the
results reported. If the experiments gave a
positive result, changes obviously would be
necessitated in some of our accepted views

as to the structure of the jonosphere.
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Stability Criteria for Tunnel-
Diode Amplifiers*

A tunnel-diode amplifier is stable when
the amplifier network is reduced to an ar-
bitrary single loop and the equation given
by the sum of the impedances around this
loop equal to zero [2Z(P)=0 where p=~
+jw] has no solution in the right-half plane
{y>0). This is equivalent to the require-
nient that the system determinant shall have
no zeros in the right-half plane. Several
authors have used this criterion.*? To de-
termine analytically whether 2Z(p) has any
positive zeros is very laborious if at all
possible for many practical amplifier con-
figurations.

A possible approach is to use a contour
theorem from the theory of complex func-
tions as formulated by Goldman.?® “If a
function Z(p) is analytic, except for possible
poles within a given contour taken in the
clockwise direction in the p-plane, then the
number of times that this contour into the
Z-plane encircles the origin in the Z-plane
in a clockwise direction is equal to the num-
ber of zeros minus the number of poles of
Z(p) inside the contour in the p-plane, each
pole and zero being counted in accordance
with its multiplicity.”

When applying this contour theorem to
SZ(p) for an arbitrary loop in the tunnel
diode circuitry, we must have a complete
knowledge of the poles of =Z(p) in the right-
half plane and at infinity. Hughes?* discusses
these difficulties and obtains a plot easy to
interpret by dividing the original function
Z(p) with a new function Zs(p) with no
zeros in the right-half p-plane, the same
number of poles as Z(p) in the right-half p-
plane and with the same limit at infinity as
Z(p) This method is applicable to tunnel-
diode amplifiers, but a complete knowledge
of the poles in the right-half p-plane is suffi-

= Recetved March 26, 1962; revised manuscript
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clent to interpret the complex plot of =Z(p)
along a chosen contour. Generally we can
say that the closer to the negative resistance
we choose the loop representing the tunnel
diode and amplifier network, the fewer the
poles in the right-half p-plane. It is conven-
ient to choose the representation given in
Fig. 1 for then the diode is separated from
the rest of the network.

Z'(p) includes the cartridge capacitance,
bias circuit, matching network, load, etc..
and is a passive impedance. The impedance
around this loop is given by

1

c
22(p) = =t Rt L+ Z(p).

? RC
This function has one pole in the right-half
planeat p=1v,=1/RCandapoleat p= + .

With a contour in the p-plane chosen as
the jw-axis and a semicircle enclosing all
poles and zeros in the right-half plane, the
sZ-plot of a stable amplifier encircles the
origin once in a counterclockwise direction as
determined by the pole p=1/RC. From
symmetry it is sufficient to plot 2Z(jw) for
positive frequencies and only up to the
diode cutoff frequency w, as the circuit is
passive above w.. Davidsohn, Hwang and
Ober’ have considered stability criteria from
a similar point of view.

Summing up we have the following sta-
bility criterion: “A tunnel-diode amplifier
15 stable 1f and only if the sum of the diode
impedance and the connected network im-
pedance plotted as o function of frequency
encircles the origin once in a counterclockwise
direction when the plot 1is closed with an arbi-
trary line in the right-half Z-plane between
the positive and mnegative diode cutoff fre-
quency. The diode cartridge capacitance is
considered to belong to the network connected to
the diode.”

Fig. 2 shows the application of this cri-
terion. This circuit is one of the simplest
possible amplifier circuits and vet it is labor-
ious 1o investigate the stability analytically.

The graphical display gives a good feel-
ing of how the amplifier stability is influ-
enced by change in diode parameters. This
is especially true when the amplilier circuit
is more complex than given in the example
so that the minimum distance between the
origin and the plotted function occurs for
frequencies different from the amplifier
center frequency.

When an amplifier configuration con-
nected to an ideal transmission line or a
load resistance Ry is determined to be
stable, it is of intercst to determine which
mismatch is permissible at the input with-
out upsetting the stability. To do this we
reduce the amplifier network to the loop
nearest to the transmission line connection
(Fig. 3). Zsmp1 includes the tunnel diode and
matching network Zisa is the transmission
line impedance with mismatches from circu-
lators, stabilizing networks, etc. A condition
for stability is that Zunpi(p)+Ziewa(p)=0

5 U. S. Davidsohn, V. C. Hwang and G. B. Ober,
“Designing with tunnel diodes, part 1,” Elec. Design,
vol. 8, pp. 50-55; February, 3, 1960.
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Fig. 1— Equivalent tunnel-diode amplifier representa-
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Fig, 2—FExample of diode and connected network
representating a stable amplifier,
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Fig. 3-—Loop for determining permissible mismatch.

has no solutions in the right-half plane. If
we define

. . Zampl — Ro
G = (ideal voltage gain) = Zm—pl—_:R—o
p = (nonideal load reflection coeflicient)
_ Lo — R
" Ziw + Ry
then Zumpi+Z1na=0 can be rewritten as
G-p—1=0.

As G-p has no poles in the right-half
plane (G is stable and Zisa is a passive im-
pedance), a necessary and sufficient stabil-
ity criterion is that the complex plot of
G-p when w goes from — = to + = does not
encircle the point +-1. (Compare with the
Nyquist criterion for feedback-amplifiers.)

If the phase of the input reflection coef-
ficient is not known or not controlled, a suf-
ficient criterion for stability is

[Gl-[el <1
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It is considered that a combined use of
the above described criteria gives a practical
means to investigate the stability of complex
tunnel-diode circuits and to determine the
limits of permissible mismatch and diode
characteristics variation.
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Heffner.
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On “An Impedance Transformation
Method for Finding the Load
Impedance of a Two-Port
Network”*

The above article! begins with ten ex-
tensive footnotes, but the authors omit the
one reference that discusses their problem:
Deschamps’ “Hyperbolic Protractor.” The
undersigned writers concede that the method
of Mittra and King is different, but it is more
complicated and less useful than that of
Deschamps.

Concerning footnote 15, one notes that
Ri1R33—R;22>0 is only a necessary but not
sufficient condition for a positive definite
quadratic form, and Ry >0, or Rys>0is also
required for sufficiency.

The undersigned find it somewhat sur-
prising that many of the techniques found
in Deschamps’ pamphlet are not more
widely used, for they apply to the interest-
ing problems in measurements on linear
passive reciprocal two-ports.

D. J. R. Stock

L. J. KapLAN

Elec. Engrg. Dept.
New York University
New York, N. Y.
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Authors’ Comment?

Concerning our paper,! Messrs. Stock
and Kaplan have made the comment that
our method for calculating an unknown load
through a junction is complicated. To
illustrate their point, they cite two ex-

3 Received June 1, 1962.
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amples (7 and 13) given in a booklet by
Deschamps.?

We feel that Stock and Kaplan have
missed the most important points in our
paper. Section II of our paper is devoted to
the establishment of a linear relationship
between the input reflectance T',, and a
modified load reflectance T'z’ by Tw—d
=p(1 —T’). The constants @ and b may be
easily found but are not necessary for
calibration. This linear relationship is the
very heart of our paper, just as Deschamps’
invariance of “hyperbolic” distances and
“elliptic” angles is the basis of his booklet.

The examples chosen for comparison by
Stock and Kaplan involve the so-called
“three point method” which is subject to
experimental errors. In any case, it is in-
structive to compare the two methods of sol-
ution of a typical example and let the reader
decide which is more complicated and which
is more accurate.

Example (Problem 5—Lossless Case):
We have chosen problem S5 instead of 7
which is essentially the same but has addi-
tional property of more nearly showing the
inverse transformation from load to input
as well as the transformation from T, to
Tz'. The choice of the input reference is
arbitrary so let us rotate the data given by
Deschamps? clockwise 71° on the Smith
chart so that when Tr=-4+1(Zr=w®),
T'sn=+41. The data would then read as fol-
lows:

1) Zu=790 when Z;=0,
2) Zin=« when Zp =,
3) Zin=81+790 when Z5=2Z4,»=200 Q.

What is the input impedance for a termi-
nation of Zz=3520 Q?

Take Znp =100 © as the center of the in-
put reflectance chart. It should be pointed
out the original data given in the booklet
has some error in that the input impedance
corresponding to Zz =0 should be 712 rather
than 710 in order for the other two measure-
ments to be consistent. This error may be
fairly difficult to detect with the hyperbolic
protractor because of the relatively large
hyperbolic distances (measured in db) in-
volved in this example.

Solution (Mittra and King): We have
chosen the input reference such that the I'y,
plane coincides with the T'z’ plane. Hence,
using the transformation sp'=rz'+jx5’
=rn/n+j(x+x1)/m and data 3) above,
r1=1/0.80=1.233 and x(/r1=0.90 for z, =1,
which determines the calibration constants
r1 and x1. To obtain 31’ =z, for Z5, =520 Q
we again apply the transformation relating
2z’ to sz, (rp=2.60, x,=0.) 21" =5 =r1/n
+7x1/r1=2.105-+70.90 which completes the
discussion. It is obvious that the inverse
problem, i.e., that of finding Z; when Z,
is given is just reciprocal.

Solution (Hyperbolic Protractor Method):
Since many readers do not have access to the
booklet describing the use of the hyperbolic
protractor we reproduce the solution in
Fig. 1. Plot Q’, P’ and O’ corresponding to

4 G, A. Deschamps, “A new chart for the solution
of transmission line and polarization problems,” IRE
TraNs. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-1, pp. 5-13; March, 1953. This paper de-
scribes the theory discussed in Deschamps “Hyper-
bolic Protractor” and is included in that booklet.
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data 1), 2) and 3) above. When the output
port is matched (200 ©), the corresponding
input reflectance point is O’ which is called
the “iconocenter” by Deschamps. The trans-
formation may be made to the projective
chart by constructing O=g(0’). Distances
on the reflectance (Smith) charts are de-
noted by [ ] and by { ) on the projective
charts. Reflectances at the input port are
denoted by primes and points on the pro-
jective chart by bars. Thus (00)=2[00']
=17 db on Fig. 1. The points P’ and Q' do
not change in this transformation 8 and
therefore the point U should fall on the
straight line 0P, the image of the diameter
QP. The point 17" which represents the in-
put reflectance for 520 @ at the output will
be on QP at the hyperbolic distance <OW >
=[0OW]=8 db or 16 db as measured on the
projective chart. This immediately gives a
means for constructing W which should be
between O and P’ since 177 itself lies between
0 and P. Measuring (OW) with the pro-
tractor it is found to be 16 db, and W is ob-
tained by taking the hyperbolic midpoint of
(OW) or 8 db. The corresponding imped-
ance obtained from the reflectance chart is
then 2.06450.90.

Fig 1.

Exawmple (Problem 13—Lossy Case): The
given data are:

1) Iconocenter =8 db/—90°,

2) T'w=9db/28° when Z;, =0.

What is the unknown load impedance
when I'yy =10 db/ —134°?

Solution (Mitira and King): This exam-
ple shows how one deals with the image cir-
cle rather than the unit circle but follows the
same steps.

Expand the T'n-circle linearly and rotate
it to correspond to the I'z’-circle. Read the
transformed iconocenter from the 'z’ plane
as 210’ =0.625~70.65=rr/r+j(xr+x1)/r1.
The load corresponding to this point is
2r.=1+470, so »1=1.60 and x;= —1.04. Now
read the transformed point corresponding to
the unknown load impedance as 25’ =0.375
—70.043. Using the impedance transforma-
tion equation as before we find zz=0.60
-+70.991. Thus, the actual load reflectance
is T'r,=11.1 db/80.5°. Incidentally, Des-
champs’ angle (CP"’, CL’’)=80.5°, not 71°,
in problem 13.




